Is that the Cordeaux Cougar ???
Hazelwood Mine – *Filling in the Cracks*

M Nicholson – Michael Nicholson Consulting Pty Ltd

R Polmear - GDF SUEZ Australian Energy

J Faithful - GDF SUEZ Australian Energy

W Hartman - GEOHART Consultants Pty Ltd

G Wilkinson - GDF SUEZ Australian Energy

15th August 2014
What am I talking about?

1. Latrobe Valley Brown Coal Reserve & Regional Geology
2. Hazelwood Mine & Power Station
3. Previous Ground Movements
4. Development of Risk Based Ground Control Management Plan
5. New Survey Monitoring Strategy
 - Coordinate Systems and Control Networks
 - ‘Continuous’ LiDAR dataset
 - 3D Discrete Point Monitoring Networks
6. Concluding Remarks
Latrobe Valley Brown Coal Reserve & Regional Geology

Latrobe Valley
- 150km east of Melbourne
- 65 billion tonnes of Brown Coal resource
- 3 current open cut mining operations
- Supply Brown Coal for electricity production
- Over 80% of Victoria’s power

Geology
- 9 – 16m of overburden
- M1 coal seam up to 165m thick (30 – 135m at Hazelwood)
- M1 Aquifer 15 -25m thick
- M2 Coal ~55m thick
Hazelwood Mine & Power Station

Mine
- Perimeter of mine - ~16km
- Area of mine – 1165 ha
- Average depth – 100m
- Volume of overburden removed – 174 Mm3
- Volume of coal removed – 720.5 Mt

Power Station
- Direct feed from mine
- 1760 MW / hr
- 20 – 25% Victoria’s Power
Previous Ground Movement...... ‘Issues’

2007 Yallourn Mine batter collapse

2011 Hazelwood Mine
Princess Freeway sink hole
and movement

2012 Yallourn Mine flooded conveyors
and Morwell River diversion
Risk Assessment (sample data only)

Descriptors

<table>
<thead>
<tr>
<th>Domain</th>
<th>Sub-domain</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Field</td>
<td>Eastern Batters</td>
<td>EF1</td>
</tr>
<tr>
<td></td>
<td>Northern Batters</td>
<td>EF2</td>
</tr>
<tr>
<td></td>
<td>Morwell Main Drain</td>
<td>MMD</td>
</tr>
<tr>
<td>South West Field</td>
<td>Northern Batters</td>
<td>SWF1</td>
</tr>
<tr>
<td>West Field</td>
<td>Northern Batters</td>
<td>WF1</td>
</tr>
<tr>
<td></td>
<td>Southern Batters</td>
<td>WF2</td>
</tr>
<tr>
<td></td>
<td>Operating Faces</td>
<td>WF3</td>
</tr>
<tr>
<td>South East Field</td>
<td>Western Batters</td>
<td>SEF1</td>
</tr>
<tr>
<td></td>
<td>Southern Batters</td>
<td>SEF2</td>
</tr>
<tr>
<td>Mine Floor</td>
<td>Sector 1</td>
<td>MF1</td>
</tr>
</tbody>
</table>

Risk Categories

<table>
<thead>
<tr>
<th>Risk Categories</th>
<th>Out People's Safety</th>
<th>Public Safety</th>
<th>Commercial Loss</th>
<th>Environment</th>
<th>Image / Reputation</th>
<th>HP Asset Integrity</th>
<th>Other Assets</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Field</td>
<td>Green</td>
<td>Red</td>
<td>Green</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Red</td>
<td>Red</td>
</tr>
<tr>
<td>South West Field</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Yellow</td>
<td>Red</td>
<td>Yellow</td>
<td>Red</td>
</tr>
<tr>
<td>West Field</td>
<td>Yellow</td>
<td>Green</td>
<td>Yellow</td>
<td>Red</td>
<td>Red</td>
<td>Yellow</td>
<td>Red</td>
</tr>
<tr>
<td>South East Field</td>
<td>Green</td>
<td>Red</td>
<td>Green</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Red</td>
<td>Red</td>
</tr>
<tr>
<td>Mine Floor</td>
<td>Green</td>
<td>Red</td>
<td>Green</td>
<td>Yellow</td>
<td>Red</td>
<td>Yellow</td>
<td>Red</td>
</tr>
</tbody>
</table>

Consequence Thresholds

<table>
<thead>
<tr>
<th>Legend</th>
<th>People / Public Safety</th>
<th>Environment</th>
<th>Image / Reputation</th>
<th>Other Assets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor injury</td>
<td>Slight / Minor release</td>
<td>Minimal impact</td>
<td></td>
<td>Up to $50K damage / loss</td>
</tr>
<tr>
<td>Serious injury</td>
<td>Onsite release</td>
<td>Localised impact</td>
<td></td>
<td>$50 - $500k damage / loss</td>
</tr>
<tr>
<td>Fatality</td>
<td>Offsite release / impact</td>
<td>Statewide impact</td>
<td></td>
<td>$500 - $5M damage / loss</td>
</tr>
<tr>
<td>Multiple Fatalities</td>
<td>Castastrophic / regional impact</td>
<td>National / international impact</td>
<td></td>
<td>> $5M damage / loss</td>
</tr>
</tbody>
</table>
Coordinate Systems

No Michael this is just too dry........

Even for most Surveyors

Move onNOW!
Control Framework
Discrete Point Monitoring Systems

- Measurement of Easting, Northing and Height (ie: 3D)

- 2 Methods used at Hazelwood:
 - RTK GNSS (reduced to ~100 points down from 400+)
 - labour intensive
 - approx. 40 points / day / person (20 using the old methodology)
 - requires physical access to all points
 - ideally suited to mine surrounds where point density is low and flat ground presents line of site issues for TS
 - simple, quick, low cost mark installation
 - Total Station (currently ~600 points)
 - highly efficient – automated measurement sequences
 - > 500 points / day / person (capable of far more depending on application)
 - No access required
 - ideally suited to mine area where large number of points observed from each instrument station
 - setup and installation costs greater than for simple RTK points
Total Station based monitoring networks

Hazelwood East Field + HARE Network

- 2 Instrument Stations, ~100 monitoring points (fixed prisms)
- Survey time, 1.5 hours, 1 person
- Survey Precision ≤ 10mm 3D @SD1
LiDAR Coverage

- 16km X 11km
- ~3 points / m²
- ± 0.1m accuracy
- 1D only
- ‘Continuous’
Concluding Remarks

Ground movement events of the past have highlighted the need for rigorous ‘risk based’ Ground Control Management Plans (GCMP)

Survey (spatial) monitoring plays a major role in Hazelwood’s GCMP

GIS used to aid in the development of understanding the correlations between ground movements and other site factors eg: coal extraction, hydration levels

Survey system is now providing Hazelwood Management with high confidence ground movement data in combination with other site monitoring datasets to facilitate timely, informed decision making

My 2 bobs worth (again):

• **Control Control Control**......*without a rigorous control framework and protocol you have nothing*

• **Understand what has to be measured**
 – Parameters
 – Accuracy
 – Frequency

Only once these factors are crystal clear should we start to consider which ‘tool’ is most suitable for the job.